Developing Efficient Linked List Operations
in the PETSc Library

Surtai Han
Hinsdale South High School

November 2012

Abstract

The software libraries that are used in large-scale scientific applications are often written for
Unix-like operating systems, much to the dismay of beginner developers who often only have
access to Microsoft Windows. The objective of this work is to develop efficient linked list
operations in a library, called PETSc, using only a Windows PC. The first solution, a Linux virtual
machine, was safe for the host operating system but heavily lacked in performance. On the
other hand, the relatively risky dual-boot Linux installation had a performance superior to even
that of the host machine. After the required software (such as text editors and the software
library itself) was installed on the Linux OS, the development could begin. To improve upon the
insertion time of the existing linked list in the PETSc library which used a linear search (O(n) IF
statements), a binary search array was implemented. The new algorithm can search the list for
the correct location using log(n) IF statements but takes O(n) iterations (non-IF) to update. In
the end, the binary search approach was slightly less efficient than the linear search but more
efficient than the other proposed linked list algorithms in the library. Elements that needed to
be inserted often formed clusters where a linear search would be effective. Also, updating the
binary search array was more expensive than anticipated because of the large jumps across
distant memory locations.

Table of Contents

1.

INEFOTUCTIONttt et e e s bt e e s be e e e st e e e sbbeeeesneeesannes 1
=T =To LU LT =P 2
SOftWAre INSTAllation........eiiiiii e 9
A F=Zo T 11 o o o FOU PP PPPRRSTPSPR 11
Numerical Experiments and RESUILS..........ueiviiiiiiiiiie et 18
Conclusion and FUTUIE WOIK.......coouiiiiiiiieeiiee ettt st 19
ACKNOWIEAGEMENTS. ...t e e e e s b e e e e e s abaeeeeeenasreees 20
RETEIENCES. ..ottt s bt e s bt e e e st e s et e e e e aree s 19
Yo7 0= o Vo 1 SRR 20

1. Introduction

Today, most large-scale scientific computing projects require high performance
supercomputers that can easily reach trillions of calculations per second. Although
improvements in hardware technologies have hugely contributed to the field of scientific
computation, improvements in software are equally significant. For instance, parallel
computing software makes it possible to boost performance without any improvement in
hardware. The Portable, Extensible Toolkit for Scientific Computationm (PETSc) library is a
software library that contains data structures and routines to help build and run these large
projects. Sparse matrix operations are computational kernels of the PETSC library. Among these
fundamental operations, symbolic matrix-matrix multiplications and factorization require
efficient linked list insertion and retrieval. One of the objectives of this work is to improve the
speed of the linked list operations for increased performance in everything that uses sparse
matrix-matrix multiplication. It was hypothesized that implementing a binary search array
(binary search algorithm) would increase the efficiency. Although the binary implementation
would need an additional O(n) operations per array, it would require significantly less IF
statements than the original linear search.

This paper also describes the various requirements have to be met in order to develop in the

PETSc library on a Windows PC and includes installation instructions for the operating system
itself, the PETSc library, and other software.

2. Prerequisites

There are some terms that need to be made clear before this paper can be effectively read.

Software refers to a collection of computer programs and related data that provides the
computer with instructions for a specific task. Computer software is entirely different from
computer hardware, which refers the physical devices (such as circuit boards, processors,
memory) that make up a computer.

[2

e Emacs?isa family of very extensible (expandable) text editors. The most popular

version of Emacs is GNU Emacs which is the version used in this work.

e Mercurial®

is a cross-platform, revision control tool (mainly implemented in Python) for
software developers. Mercurial was used in this work to manage the local version of the

PETSc library and to control the source code of the edited linked list.

° Valgrind[4] is a GPL licensed programming tool for memory debugging, memory leak
detection, and profiling. It was installed to help detect flaws in the code that created
memory leaks.

Computer Science refers to the design of software and algorithms. It is a different field from
computer engineering (which focuses on the design of hardware) although the two sometimes
overlap.

e Parallel Computing is a form of computation in which many calculations are carried out
simultaneously. Large problems are divided into smaller ones, which are then solved
concurrently, or, "in parallel".

Memory refers to the physical devices used to store electronic data. Computer memory is
organized in a structure called a memory hierarchy where many levels of memory exist. The
memory can be accessed increasingly faster towards the top of the pyramid, while there is an
increasing amount of memory available towards the base.

The four major storage levels:
1 Internal — Processor registers and cache.
2 Main —the system RAM and controller cards (includes virtual memory)
3 Secondary storage such as hard drives.
4 Tertiary storage such as an external hard drive or cloud storage.

The term is used in this paper when discussing performance issues in algorithms related to
lower level programming constructs involving locality of reference. Memory most often refers
to a computer’s Main memory.

e Random Access Memory (RAM) a form of computer data storage where storage and
access times stay roughly constant regardless of the memory location. A device such as
a magnetic tape that requires increasing time to access data stored on parts of the tape
that are far from the ends would not be considered random access. However, more
specifically, RAM mostly refers to volatile types of memory, where stored information is
lost if the power is removed. In most personal computers, DRAM (dynamic) is preferred
over SRAM (static) despite the power conservation and better performance that SRAM
offers because of price. Double data rate synchronous dynamic random-access memory
(DDR SDRAM), is a more complex and efficient form of DRAM that’s widely used in PCs.
Volatile random access memory is usually a computer’s main memory.

The hard drive (one or more rigid, rapidly rotating discs coated with magnetic material)
serves mostly as secondary storage because it is comparatively slower and cheaper.

Virtual memory refers to primary memory stored on secondary memory. In other
words, it is a portion of the hard drive that is used as if it were RAM. It is considerably
slower because not only is the I/O time of the hard drive slow, but there is also a
constant shifting of memory from RAM to HDD. Virtual RAM allows more demanding
applications to run, but with the cost of efficiency. Lack of RAM on the host computer
often makes virtual machines slow and inefficient.

A cache is a component that transparently stores data so that future requests for that
data can be served faster. The data that is stored within a cache might be values that
have been computed earlier or duplicates of original values that are stored elsewhere. If
requested data is contained in the cache (cache hit), this request can be served by
simply reading the cache, which is comparatively faster. Otherwise (cache miss), the
data has to be recomputed or fetched from its original storage location, which is
comparatively slower.

A processor register is a very small amount of storage available in a CPU. Processor
registers are normally at the top of the memory hierarchy, and provide the fastest way
to access data. Almost all computers load data from a larger memory into registers
where it is used by some machine instruction. Manipulated data is then stored back in
main memory.

A CPU cache is a cache used by the processor to increase memory access speed. The
cache is a smaller, faster memory which stores copies of the data from the most
frequently used main memory locations.

Locality of reference is a common property of computer programs: The same values are
often repeatedly accessed. Holding these frequently used values in caches improves
performance, making fast registers and caches useful.

The Windows Registry should not be confused with a processor register. It’s not a form
of memory, but rather a database that stores configuration settings on Microsoft
Windows operating systems.

Defragmenting refers to the physical reorganization of the contents of a disk to store
files in a fewer number of contiguous regions (fragments). It usually also creates larger
regions of free space.

Disk partitioning is dividing a hard disk drive into multiple storage units (partitions) in
order to treat one physical disk drive as if it were multiple disks.

A library is a collection of resources such as subroutines and values used by programs on a

computer, often to develop software.

Message Passing Interface (MPI)[5] is a library specification for portable message-
passing systems designed to function on a wide variety of parallel computers that are
used to run large-scale applications. Several implementations of MPI are free and in the
public domain.

)[6] is an application programming interface

Basic Linear Algebra Subprograms (BLAS
standard for publishing libraries to perform basic linear algebra operations such as
matrix multiplication. These subprograms are often used in high-performance

computing and are used to build larger packages such as LAPACK.

Linear Algebra Package (LAPACK)" is a library for numerical linear algebra. The routines
handle both real and complex matrices in both single and double precision.

PETSc (Portable, Extensible Toolkit for Scientific Computation)[” is a suite of data
structures and routines for the scalable (parallel) solution of scientific applications. It is
built on top of MPI, BLAS, and LAPACK. PETSc is intended for use in large-scale
application projects. It includes a large collection of parallel linear and nonlinear
equation solvers that are easily used in application codes written in C, C++, Fortran and
Python. PETSc also provides many of the mechanisms needed within parallel application
code.

A data structure is a particular way of storing and organizing data in a computer so that it can

be used efficiently.

A linked list is a data structure consisting of a group of nodes where each node is
composed of a datum and a link to the next node in the sequence.

An array is a data structure consisting of a collection of elements that uses physical
memory addresses consecutively. Each element is identified by an array index.

A gap buffer is a dynamic array that allows efficient insertion and deletion operations
clustered near the same location. Gap buffers are especially common in text editors,
where most changes to the text occur at or near the current location of the cursor. The
text is stored in a large buffer in two contiguous segments, with a gap between them for
inserting new text. Emacs uses this data structure to edit text. “Save current buffer to its
file” simply means “save changes”.

An operating system is a set of software that communicates with the computer hardware and

provides common services for computer programs. For example, Microsoft Windows is an

operating system while Microsoft Word is an application.

A kernel is the main component of most computer operating systems; it is a bridge
between applications and the actual data processing done at the hardware level. An
operating system includes software other than the kernel. For example, Ubuntu,
Redhat, and Debian are all operating systems that use the Linux kernel.

Booting is the initial set of operations that a computer system performs when electrical
power is switched on. Part of booting requires finding, loading and starting an operating
system which is supplied by the Ubuntu CD in this case.

Bit means 0 or 1. 32-bit or 64-bit is referring to the size of address buses, data buses,
integer size, and registers. A 32-bit operating system can use up to 4 gigabytes of RAM
while a 64-bit machine can access potentially 17.2 billion gigabytes. With 32 bits, there
are only 2232 many possibilities for memory addresses. For example,
10101011010010000101001110010011 is one possibility in 32-bit processors while
1010101101001000010100111001001110101011010010000101001110010011 would
be one possibility in 64-bit processors. The bit of an operating system indicates what
processor it is compatible with. 32 Bit Operating systems work on 32 Bit CPUs and 64 Bit
CPUs, but 64 Bit operating systems work on 64Bit CPUs only.

Linux® here is referring to any operating system with a Linux kernel. There is an
operating system that is called Linux itself but Ubuntu was the guest OS used in this
project. Operating systems that use the Linux kernel are Unix-like and assembled under
the model of free and open source software development and distribution. Unix-like

operating systems are widely used in research because of their flexibility, price, and
stability.

e Ubuntu®isa popular computer operating system that uses the Linux kernel and is
distributed as free and open source software using its own desktop environment.

o Grub™ s the boot loader of the GNU Project. In this work, it is used to choose which
operating system to boot from once two operating systems are installed onto the same
hard drive.

¢ Dual Boot is the act of installing two operating systems onto the same hard drive. Often,
a custom boot loader is needed.

A shell is software that provides an interface for users to access the services of a kernel.

e Bash'!

is a Unix shell written for the GNU Project. It is distributed widely as the default
shell on Linux. Bash is a command processor, typically run in a text window, that

executes the commands the user types. It “bashed” together the features of the sh, csh
and ksh shells.

A virtual machine is a completely isolated guest operating system installation within a normal
host operating system. In other words, it’s a software implementation of a machine that
executes programs like a physical machine.

e VirtualBox'?

is a free software that allows a computer to create and run multiple
virtual machines. Oracle VM VirtualBox is installed on an existing host operating system
as an application; this host application allows additional guest operating systems to be

loaded and run, each with its own virtual environment.

e An SO (.iso) file is an archive file (also known as a disk image) of an optical disc,
composed of the data contents of every written sector of an optical disc including the
optical disc file system. ISO images can be created from optical discs and those images
can be used to write to other optical discs. In this project, an iso file of an operating
system is burned onto a disc to boot from.

The GNU Project[lg] is a free software, mass collaboration project. The founding goal of the
project was to develop "a sufficient body of free software [...] to get along without any software

that is not free." The Linux kernel that was released as free software completed GNU’s goal of a
free software operating system.

e The GNU General Public License™" (GNU GPL or simply GPL) is the most widely used
free software license.

A programming language is an artificial language designed to communicate instructions to a
machine, particularly a computer.

e A high-level programming language is a programming language with strong abstraction
from the details of the computer. The syntax of high-level programming languages is
similar to everyday speech. Most popular programming languages today, such as Java,
C++, and Python, are considered high-level programming languages.

e Alow-level programming language is a programming language that provides little or no
abstraction from a computer's instruction set architecture. Generally this refers to
either machine code or assembly language. Low-level languages are sometimes
described as being "close to the hardware."

e A compiler is software that translates high-level, source code written in a programming
language into a lower-level language such as assembly or machine code (computer
code) that the machine can execute.

e Pseudocode is an informal high-level description of a computer algorithm. It is intended
for easier human reading and understanding of the key principles of the algorithm, but
retains the structural conventions of a programming language. It is used in this paper to
roughly explain how the newly proposed algorithms work.

e Cisageneral-purpose, procedural programming language. Because its design provides
constructs that map efficiently to typical machine instructions, it found lasting use in
applications that had formerly been coded in assembly language. At the same time, Cis
also capable of abstraction like high-level languages. Thus, C is often considered the
“middle level” language. C is also one of the most widely used programming languages
of all time-both the Unix and Linux operating systems are written in C as well as a large
portion of the PETSc library.

e C++is another general-purpose programming language. It is also regarded as an
intermediate-level language, because it retained the high-level and low-level features of

C. C++ adds object oriented features and other enhancements to the C programming
language, hence the name C++.

(15]

Fortran'™' is a general-purpose programming language that is especially suited to
numeric computation and scientific computing.
Python!'® is another general-purpose, high-level programming language that is used in

mercurial and PETSc.

3. Software Installation

Installing Linux Using a Virtual Machine

Download and install virtual machine (VM) software such as VirtualBox

Download the latest version of Ubuntu as an ISO file. Make sure to download the 32-bit
version even if the windows host operating system is 64-bit because the 64-bit version
of Ubuntu is often incompatible with certain software

Burn the Ubuntu ISO file onto an unused CD

Create a new virtual machine on VirtualBox and run it. Boot from the cd that was
created in order to install Ubuntu onto the newly created virtual machine (internet
connection required and several gigabytes of hard disk space recommended)

Note that the virtual machine implementation of Ubuntu is significantly slower than the
dual boot.

Installing Linux Using a Disk Partition

Download the latest version of Ubuntu as an ISO file. Make sure to download the 32-bit
version even if the windows host operating system is 64-bit

Burn the Ubuntu ISO file onto an unused CD and eject the CD

Because the following procedure is risky, it is recommended to back up all important
files in an external hard drive or another medium

Defragment the hard drive

Shrink the hard drive partition using Windows (recommended) or third-party software
such as GParted

Shut down the system immediately after partitioning

Boot from the Ubuntu CD and follow the instructions to install Ubuntu onto the unused
partition

Installing PETSc and other software utilities required for development on Ubuntu

10

I"

e Install C/C++ and Python compilers using “sudo apt-get install build-essential” on the
terminal
e Install Emacs using “sudo apt-get install emacs” (text editor)

IH

e Install Mercurial using “sudo apt-get install mercurial” (source control software)

e Install Valgrind using “sudo apt-get install Valgrind” (memory debugging)

e Install CMake using “sudo apt-get install cmake” (builds libraries faster)

e Next, edit the file “.bashrc” located in the home directory. Add “export
PETSC_DIR=SHOME/soft/petsc-dev” (where the local copy of the petsc library will be
located) and “export PETSC_ARCH=arch-linux-debug” (name of the folder in the petsc
directory where the code will be located) Theses two lines of code will initialize the two
variables whenever a new terminal is opened.

e Restart the terminal

e Itisimportant to download PETSc into a folder other than the home directory.

e Navigate to the directory where PETSc is going to be installed

e hgclone http://petsc.cs.iit.edu/petsc/petsc-dev

e cd petsc-dev
e nano .hg/hgrc (and add the following lines)

[hooks]
post-pull = "SHG" SHG_ARGS -u S@ --cwd config/BuildSystem

* hgclone http://petsc.cs.iit.edu/petsc/BuildSystem config/BuildSystem

e To configure, use “./configure --with-cc=gcc --with-fc=0 --download-f2cblaslapack --
download-mpich --with-c2html=0 —with-cmake=/path/to/cmake”

e The Fortran compiler and html documentation functions will not be needed

e Afterwards, use “make all test” to compile and test the library

e With the current settings, debugging is turned on. To collect accurate performance data,
another library with debugging turned off is needed. To do this, set PETSC_ARCH equal
to “arch-linux-opt” (folder where the optimized version of PETSc will be installed) and
configure the library again with the same settings but at the end, add “--with-
debugging=0"

e Again, use “make all test” to compile and test the library

4. Algorithm

The goal is to create a linked list data structure in the PETSc library for storing non-negative
integers. The list cannot allow duplicates (many will be present in the input array) and should

11

remain sorted at all times. The focus of the algorithm is to efficiently merge sorted arrays into
the list.

The existing linked list data structure in PETSc is stored in a pre-allocated array so that new
memory does not have to be allocated each time a new value is added. A separate bit array
assists in keeping track of the values that already exist in the list. To insert elements, the
algorithm first checks the bit array to see if the value already exists. If not, a linear search is
performed on the linked list to find the correct insertion location. The new value is appended to
the end of the data array and the pointers are adjusted.

To increase search speed for the insertion location, a sub-array of indexes (memory locations)
of the elements in ascending order is added on to the end of the data structure. This new array,
named the binary search array (bsearch), is searched using the binary search algorithm and
updated after each array is merged.

To differentiate from the existing linked list in the library (LList), the linked list that uses the
binary search algorithm is named LList_bsearch.

How the Linked List is stored in an array

The data structure uses a single array instead of parallel arrays to minimize jumping back and
forth distant memory locations. A few critical values are held at the start of the array for
efficient access. The first index (array[0]) contains the number of nodes currently stored in the
list excluding the head node. The second value (array[1]) contains the location in the array
where the binary search list starts, a special “sub-array” used to perform a binary search on the
list when a new element needs to be added. The next two values represent the head node:
array[2] contains the max integer the list can contain while array[3] contains a pointer back to
itself. array[4] contains the data of the first real node.

In Figure 1, each blue oval represents a node. The number on the left is the data that the node
contains while the value on the right is the memory location of the next node in ascending
order. There is space for just one more element. The binary search array (orange) is stored at
the end. The first value in the binary search section represents the memory location of the
smallest node. The next value represents the memory location of the node immediately greater
than the first.

12

The bitarray is a separate data structure (not shown in diagrams) that needs to be passed in
separately to a method whenever the linked list is used. The length of the bit array is the
maximum value that the list can contain. An example usage of the bitarray would be:

If bitarray[9] returns 0, that means the integer “9” is not present in the linked list.

[5, 16|00, 10 |G, 81 0,0]10,@,12, 6, 8, 0] <-- Data Stucture in Memory

12 13 14 15 16 17 18 19 20 21 <--Indicies (memory locations)

5,16] 100, 10| 2, 121 5,81 6,2] 1, 4] 3,6] 0,0] < Linked List Portion of Data Structure

10, 4,12,6,8,0 <-- Binary Search Portion of Data Structure

Figure 1

100 | *

T L

16<05<’3

\
(A
®

WV

N
o

Figure 2

In Figure 2, an abstract representation of the linked list is shown. Each rectangle represents a
node with a datum and a pointer, or address to the next node.

Figure 3 depicts the binary search array. It is an array of pointers that point to the nodes in
ascending order. Thus, a binary search can be carried out on the binary search array and the
index of the correct insertion location can be quickly found.

1 |e > 2 |-

3 |e+—| 5 |e+——| 6 |eo

— >
Ny
\. ‘/ / Figure 3
12 6 8

10 4

Insertion of new element (given insertion location)

This algorithm (used in both the linear search and binary search algorithms) appends the new
value to the end of the data array and adjusts the pointers to insert the element into the linked
list. The memory location of the small node pointer, the location of the big node data, and the
number of nodes already stored in the list are required in order for a new element to be
inserted.

Algorithm 1: Insertion {
1) let the small node point to the memory location in the array where the new value
will be inserted
2) append the new value to the array by (put it in the newly calculated memory
location)
3) let the new node point to the node that is immediately bigger than itself

In Figure 4, 7 is the new value, 6 is the number that is immediately less than the new value (the
small node), and 12 is the value contained in the big node (the one that is immediately greater
than the new value).

6 |e > 12 |e 6 \ 12 | 6 \ 12 | 6 0\ 12 |
Y \Y A
. . 7 |e 7 /
Step 1 Step 2 Step 3 Figure 4

Basic Linear Search

This algorithm iterates through the nodes of the linked list one by one to find the location that
the new element should be added to and inserts the new element.

Algorithm 2: Basic Linear Search {

Start the algorithm at the head node
Store the number of entries that are in the linked list in a local variable
Iterate through input array

{

14

Get the next value in the input array
if the input value does not already exist in the linked list

{

record that the new value has been added

do{
record where the pointer of small node is located

move to the next node

get the value in the next node
} while (new value > value of current node)
insert new value using Algorithm 1: Insertion

}

update the number of entries in the linked list according to local value

In Figure 5, the linked list is represented by nodes and the binary search array is not shown
because is it not part of the basic linear search. The red squares highlight the nodes that the
algorithm is currently on. The blue box highlights the new value (from the input array) that

needs to be inserted into the list.

-o .0,150,170
16

h'd

200}.. >-0,17o
8 16
20 |[e4—| 6 |e ,-o.ql-.-—>|17o
8
200)60,80-4|.o,-0
8
20 ([e+—>| 6 |e+—] 8 |e1 15 |e 16 |e > 17 |e

Figure 5

15

Retrieving data and Cleaning the list

The purpose of the linked list was is to add items quickly. Now, all of the items need to be
retrieved as an array and the list has to be reinitialized so that it can be used again. It should be
noted that resetting does not imply setting all the values to zero. An adjustment of just a few
values is sufficient. For example, set the number of entries to 0.

Binary Search

This algorithm performs the binary search algorithm on the binary search array to find the
correct location for the new element. The algorithm works by dividing the array size in half to
find the middle value. If the new value is smaller, the bigger half is discarded. Otherwise, the
smaller half is discarded. The section that is kept is then divided in two and searched again until
the search is narrowed down to two nodes. A linear search then starts from the smaller of the

two nodes.

Algorithm 3: Binary Search {

While (remaining array is size 2 or more)

{
if new value is smaller than the middle value
discard the upper portion of the array
else
discard the lower portion of the array
}

Algorithm 2: Linear Search starting from the lesser value in the remaining array

Figure 6 depicts the insertion of the value “35” in an array that contains values 0-100. First, the
greater half is discarded because 35 is less than 50. Then the lesser half is discarded because 35
is greater than 25. And then the greater half is discarded again because 35 is less than 37.
Eventually, only two values will remain.

16

50

Searching for 35 in an array
that contains values 0-100
using the binary search

50

3
25 31.37

Figure 6

Updating the binary search array

After an input array is merged into the list, the binary search array should be updated for good
performance in merging the successive input array.

Algorithm 4: Bsearch Update {

Iterate (size of linked list) number of times

{

Get the location where the next value in the linked list exists
Record the location in the binary search array

If the binary search array were not updated, the algorithm would still work properly but it
would not be as efficient because a new element might need to be inserted in a location where
there is a cluster of elements that are not known to the binary search array.

17

In Figure 7, the yellow nodes are the ones that are unknown to the binary search array yet exist
in the linked list. If the number “106” needed to be added, the binary search would stop at “89”
and there would have to be two more additional steps in the linear search before the insertion
location for the “106” is found.

17 (e4—>| 20 |e1+—>| 89 |e1—| 90 |e4—>| 105 || 120 (e

Bsearch: \. 1

Figure 7

5. Numerical Experiments and Results

To achieve optimal performance and collect the most accurate data on actual efficiency,
optimized mode (o-mode) needs to be used instead of debugging mode (g-mode) when
building the PETSc library and application codes. Code compiled under these settings is more
difficult to debug but boasts significant performance improvement.

The experiments were conducted using the matrix "arco4" of size 27,007x 27,007 from PETSc
matrix collection. The matrix arises from multiphase flow modeling of oil reservoirs. It is sparse
with 543103 non-zero elements, i.e. only 543103/(27007x27007) = .07% non-zero matrix
elements. The table below shows the numerical results collected from a Windows Vista
machine with an Intel Duo Core processor.

Search Algorithm

Execution Time (sec)
(debugging mode)

Execution Time (sec)
(optimized mode)

Linear search 6.8e-01 2.28e-01
Binary search 1.04 e+00 3.32 e-01
Bit heap 1.47e+00 5.24e-01
Heap 7.44e+00 1.96e+00

18

The proposed binary search approach was slightly less efficient than the linear search but more
efficient than the other existing linked list algorithms in the library. Elements that needed to be
inserted often formed clusters where a linear search would be effective. Also, updating the
binary search array was more expensive than anticipated because of the large jumps across
distant memory locations.

6. Conclusion and Future Work

Large organizations and scientific computation alike prefer Unix over Windows because
Unix is portable, stable, cheap (often free), open-source, and possess much greater processing
power. For developers looking to run a Unix-like operating system, a dual boot installation, if
done correctly, will be a much better long term solution.

The issue with the binary search algorithm was that it was not specific enough to the
problem. It was perhaps better suited for merging unsorted arrays where there is potentially
much space between one insertion location and the next. A second approach to this problem
better accounted for the fact that, for the most part, there are few nodes between one
insertion location and the next. This approach involved a similar linear search but iterated
through the linked list two nodes at a time instead of one. The performance was still 1.1x
slower than the original linear search but it was faster than the binary, which was around 1.4x
slower. We plan to continue this research on efficient methods of linked list insertion to
increase the efficiency of not only the linked list algorithm itself, but also various other
subroutines that heavily rely on fast linked list performance.

7. Acknowledgements

A huge thanks to my instructor, Professor Hong Zhang of Computer Science Department in

Illinois Institute of Technology and Mathematics and Computer Science Division at Argonne
National Laboratory.

8. References
[1] http://www.mcs.anl.gov/petsc/

[2] http://www.gnu.org/software/emacs/

[3] http://mercurial.selenic.com/

[4] http://valgrind.org/

[5] http://www.mcs.anl.gov/research/projects/mpi/
[6] http://www.netlib.org/blas/

[7] http://www.netlib.org/lapack/

19

[8] http://www.linuxfoundation.org/

[9] http://www.ubuntu.com/

[10] http://www.gnu.org/software/grub/

[11] http://www.gnu.org/software/bash/manual/bashref.html
[12] https://www.virtualbox.org/

[13] http://www.gnu.org/gnu/thegnuproject.html

[14] http://www.gnu.org/licenses/gpl.html

[15] http://www.fortran.com/

[16] http://www.python.org/

9. Appendix

#undef _ FUNCT__
#define _ FUNCT__ "PetscLLCondensedCreate_binarysearch"
/*

Create and initialize a condensed linked list -

same as PetscLLCreate(), but uses a scalable array 'Ink' with size of max number of entries, not O(N).

Contributed by Surtai Han, Hinsdale High School

Input Parameters:
nink_max - max length of the list
Ink_max - max value of the entries
Output Parameters:
Ink - list created and initialized
bt - PetscBT (bitarray) with all bits set to false. Note: bt has size Ink_max, not nln_max!
*/
PETSC_STATIC_INLINE PetscErrorCode PetscLLCondensedCreate_binarysearch(Petscint
nink_max,Petscint Ink_max,PetscInt **Ink,PetscBT *bt)
{
PetscErrorCode ierr;
Petscint *[Ink;
PetscFunctionBegin;
ierr = PetscMalloc(2*(nInk_max+2)*sizeof(PetscInt)+(nlnk_max)*sizeof(PetscInt),Ink); CHKERRQ(ierr);
ierr = PetscBTCreate(Ink_max,bt);CHKERRQ(ierr);
lInk = *Ink;
lInk[0] = O; /* number of entries on the list */
lInk[1] = 2*(nInk_max+2); /*location where the binary search array begins*/
lInk[2] = Ink_max; /* value in the head node */
lInk[3] = 2; /* next for the head node */
lInk[link[1]] = 2; /* first value of bsearch array is 2 */

20

PetscFunctionReturn(0);/*bsearch array is nink_max long*/

}

#undef _ FUNCT__
#define _ FUNCT__ "PetscLLCondensedAddSorted_binarysearch"
/*
Add a SORTED ascending index set into a sorted linked list. See PetscLLCondensedCreate() for detailed
description.
Input Parameters:
nidx - number of input indices
indices - sorted interger array

Ink - condensed linked list(an integer array) that is created
bt - PetscBT (bitarray), bt[idx]=true marks idx is in Ink
output Parameters:
Ink - the sorted(increasing order) linked list containing previous and newly added non-redundate
indices
bt - updated PetscBT (bitarray)

*/
PETSC_STATIC_INLINE PetscErrorCode PetscLLCondensedAddSorted_binarysearch(PetscInt nidx,const
Petscint indices[],Petscint Ink[],PetscBT bt)

{

PetscIint _k, entry, location, next, Inkdata, nink, newnode, min, _max, mid;

PetscFunctionBegin;

_nink =Ink[0]; /* num of entries on the input Ink */
_min =Ink[1]; /* where the binary search array starts */
_max = Ink[0]+Ink[1]; /* where the binary search array ends */

for (_k=0; _k<nidx; _k++){
_entry = indices[_k];
if (IPetscBTLookupSet(bt, entry)){ /* new entry */
/* search for insertion location using binary search*/
if(_entry>Ink[Ink[3]]){ /* if bigger than first value */
_max=Ink[1]+Ink[0];
while (_max > _min+1){
_mid=(_max+_min)/2;
if(_entry > Ink[Ink[_mid]])/*entry greater than midpoint*/
_min=_mid;
else/*entry less than midpoint*/
_max=_mid-1;
}

_location=Ink[_min];/*start linear search from min*/

}

else{

21

}

_location=2;/*otherwise, start lin search from head node*/
!
do{
_next=_location+1;
_location=Ink[_next];
_Inkdata=Ink[_location];
lwhile(_entry > _Inkdata);
/* insertion location is found, add entry into Ink */

_newnode = 2*(_nInk+2); /* index for this new node */
Ink[_next] = _newnode; /* connect previous node to the new node */
Ink[_newnode] =_entry; /* set value of the new node */
Ink[_newnode+1] = _location; /* connect new node to next node */
_nink++;
P
N
Ink[0] = _nInk; /* update number of entries in the list */

_location=Ink[3]; /*location of data of first node */
_min=Ink[1];/*location where the binary search array starts */
for(_k=0; k<_nlInk; _k++){
Ink[_k+_min]=_location;
_location=Ink[_location+1];/*update bsearch array*/
}

PetscFunctionReturn(0);

#undef _ FUNCT__

#define _ FUNCT_ "PetscLLCondensedClean_binarysearch"
PETSC_STATIC_INLINE PetscErrorCode PetscLLCondensedClean_binarysearch(Petscint Ink_max,Petscint
nidx,Petscint *indices,PetscInt Ink[],PetscBT bt)

{

PetscErrorCode ierr;
Petscint _k, next, nlnk;
PetscFunctionBegin;
_next =Ink[3]; /* head node */
_nink =1Ink[0]; /* num of entries on the list */
for (_k=0; k<_nlnk; _k++){

indices[_k] = Ink[_next];

_next =Ink[_next +1];

ierr = PetscBTClear(bt,indices[_k]);CHKERRQ(ierr);
}
Ink[0] = 0; /* num of entries on the list */

22

Ink[2] = Ink_max; /* initialize head node */

Ink[3] = 2; /¥ head node */

Ink[Ink[1]] = 2; /* first value of bsearch array is 2 */
PetscFunctionReturn(0);

#undef _ FUNCT__
#define __FUNCT__ "PetscLLCondensedView_binarysearch"
PETSC_STATIC_INLINE PetscErrorCode PetscLLCondensedView_binarysearch(Petscint *Ink)
{
PetscErrorCode ierr;
PetscInt k;

PetscFunctionBegin;
ierr = PetscPrintf(PETSC_COMM_SELF,"LLCondensed of size %d, (val, next)\n",Ink[0]);CHKERRQ(ierr);
for (k=2; k< Ink[0]+2; k++){
ierr = PetscPrintf(PETSC_COMM_SELF," %D: (%D, %D)\n",2*k,Ink[2*k],Ink[2*k+1]);CHKERRQ(ierr);
}

PetscFunctionReturn(0);

}

#undef _ FUNCT__
#define _ FUNCT__ "PetscLLCondensedDestroy_binarysearch"
/*

Free memories used by the list

*/

PETSC_STATIC_INLINE PetscErrorCode PetscLLCondensedDestroy_binarysearch(Petscint *Ink,PetscBT bt)

{

PetscErrorCode ierr;

PetscFunctionBegin;

ierr = PetscFree(Ink);CHKERRQ(ierr);

ierr = PetscBTDestroy(&bt);CHKERRQ(ierr);
PetscFunctionReturn(0);

23

